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In a recent study, the authors have used the semi empirical fine-tuned
Hartree–Fock ground-state electron density n(r) of Cordero et al. [Phys.
Rev. A 75, 052502 (2007)] for the Be atom to calculate the phase �(r) from
a non-linear pendulum-like equation. Since the density amplitude n(r)1/2

plus �(r) determine, in turn, the idempotent Dirac density matrix �(r, r0), we
use n(r) and �(r) first of all to calculate the exchange energy density eX(r) of
the density functional theory (DFT). This enables us to obtain the Slater
(Sl) approximation VSl

X rð Þ to the exchange-only potential. A comparison
can then be made, by integrating the earlier predicted exchange-correlation
force �@VXC (r)/@r, of VXC (r) with VSl

X rð Þ. Relationship to the Becke
semiempirical density gradient approximation for exchange is also
established. Some brief discussion of the Perdew–Burke–Ernzerhof density
functional is added.

Keywords: kinetic energy density; Slater’s potential; exchange-correlation
potential; beryllium atom; exact Kohn–Sham potential

1. Background and outline

As was known already to Møller and Plesset [1] in their pioneering work on
perturbation theory with the non-relativistic Hartree–Fock (HF) method as the
unperturbed solution, the HF ground-state electron density of atoms, molecules and
clusters is of high accuracy. Indeed, as pointed out already in [1], this density is
correct to second-order in the difference between the Fock operator and the exact
non-relativistic Hamiltonian.

Recently, Cordero et al. [2] have proposed a method to bypass such perturbation
theory [1] by invoking semiempirical tuning of the HF electron density. Their
experimental input was the measured ionisation potential. Here, we first set out
largely analytic theory which allows the Cordero et al. fine-tuned density, denoted
simply by n(r) below, for the case of the non-relativistic Be atomic ions for arbitrary
atomic number to be utilised within density functional theory (DFT) [3] to obtain
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rather directly the single-particle kinetic energy density ts(r). Then, a generalisation

beyond the two-level occupancy of the Be series is presented, again based on the

semiempirical fine-tuned HF ground-state electron density.
Starting with the Be-like series of atomic ions, we draw on the early study of

Dawson and March [4]. For a given one-body potential V(r), chosen below to be the

sum of a symmetrised Hartree contribution plus the exchange-correlation potential

VXC (r) of DFT [3], the Dirac [5] single-particle idempotent density matrix �s(r, r
0)

can be expressed [4] as

�s r, r
0ð Þ ¼ n rð Þ1=2n r0ð Þ

1=2
cos � rð Þ � � r0ð Þ½ �: ð1Þ

In Equation (1), n(r)1/2 is the so-called density amplitude, determined at the quantum

Monte Carlo level of accuracy by Cordero et al. [2], while �(r) is a phase factor. From
[4], this is determined, for the given ground-state density n(r), by solving the

non-linear pendulum-like equation

r2� rð Þ þ
rn rð Þ

n rð Þ
r� rð Þ þ � sin 2� rð Þ ¼ 0 ð2Þ

for the eigenvalue �, and for the phase factor �(r) entering Equation (1). Then the

important single-particle kinetic energy density ts(r) already referred to is given by

ts rð Þ ¼
1

8

rn rð Þ½ �
2

n rð Þ
þ
1

2
nðrÞ r� rð Þ½ �

2: ð3Þ

With this background, the outline of what follows is related to our previous study

of the Be atom [6] in which �(r) is obtained, essentially by solution of Equation (2),

by inserting the Cordero et al. density for n(r). Thus in Section 2, �(r) and n(r) are

utilised for the Be atom to plot the single-particle kinetic energy density ts(r) given in

Equation (3) and calculate the exchange energy density eX(r), which is defined,

following Dirac [5] in terms of �s as

eX rð Þ ¼ �
1

4

Z
�2s r, r0ð Þ

r� r0j j
dr0: ð4Þ

From Equations (1)–(4), it is then evident, as stressed for example by March and

Santamaria [7] that eX(r) and ts(r) are closely related: for Be, in particular, both being

determined by n(r) and the phase factor �(r).
Section 3 is then concerned first with the exchange potential of Slater [8]

determined essentially by eX(r) in Equation (4) and the Cordero et al. density n(r) and

secondly with Becke’s gradient-corrected exchange potential. Section 4 summarises

results for the Perdew–Burke–Ernzerhof (PBE) density functional, shown in a recent

contribution of Amovilli et al. [9] to have considerable merit over three other widely

used functionals.
A brief summary is then given in Section 5, which also considers for further study

the relaxing of the two-level occupancy constraint which allows the Be �s to be

written in terms of n(r) and �(r).
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2. Single-particle kinetic energy in relation to exchange energy density in the

Be atom

Using the phase factor �(r) calculated by Bogár et al. [6] and displayed in their

Figure 2, plus the Cordero ground-state electron density n(r), we depict in Figure 1a

our present results for the single-particle kinetic energy per particle �s(r)¼ ts(r)/n(r)

given in Equation (3) above. The value at the Be nucleus, namely �s(0), can be related
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Figure 2. The exact KS exchange-correlation potential VXC(r) and several approximate
exchange potentials (LDA, Slater, Becke88 and PBE) as derived from the Cordero et al. [2]
density for the Be atom. The right panel is a closer view of the potentials around the shell
region.
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Figure 1. (a) The single-particle kinetic energy and (b) Slater’s exchange energy per particle
for the Be atom calculated from the exact KS solution corresponding to the Cordero et al. [2]
density.
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to the singularity at the nucleus. The Kohn-Sham (KS) orbitals are the bounded
solutions of the

�
1

2
r2’ rð Þ �

Z

r
’ rð Þ þ veff rð Þ’ rð Þ ¼ "’ rð Þ ð5Þ

KS eigenvalue equation. Provided that the singularity of the potential at the nucleus
is properly represented by Z/r (thus Z is the Kato effective charge), the
eigenfunctions satisfy the ‘cusp’ condition

r’½ �av0 þZ ’ð0Þ ¼ 0 , ð6Þ

where r’½ �av0 is the spherical average

r’½ �av0 ¼ lim
R!0

1

4�R2

Z
G Rð Þ

r’ df, ð7Þ

(G is a ball of radius R around the nucleus). It follows from Equation (6), that

d

dr
� rð Þ

����
r¼0

¼ 0, �s 0ð Þ ¼
1

2
Z2: ð8Þ

The asymptotic value,

�s !
1

4

ffiffiffiffiffi
2I
p

, r!1, ð9Þ

is determined by the ionisation potential. The Cordero density corresponds to
Z¼ 4.127 and I¼ 0.344, which is reflected in our figure.

With the same input of n(r) and �(r), but now via Equations (1) and (4), the
exchange energy per particle "X(r)¼ ex(r)/n(r) is displayed for the Be atom in
Figure 1b.

Having stressed the intimate connection between kinetic and exchange energy
densities in this section, we turn to treat the more difficult problem of the exchange-
only potential VX(r) of DFT in the following section.

3. Exchange-only potentials for Be: especially the Slater (Sl) approximation VSl
X rð Þ

and the Becke result

On physical grounds, Slater [8] proposed to write the total exchange energy EX

given by

EX ¼

Z
eX rð Þ dr , ð10Þ

by analogy with electrostatics in the form

EX ¼
1

2

Z
n rð ÞVSl

X rð Þdr: ð11Þ

Then a ‘differential equation’ yields Slater’s approximation

VSl
X rð Þ ¼

2eX rð Þ

n rð Þ
: ð12Þ
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Since one of us (March) showed in early work, using Equation (4) as r tends to
infinity, plus the idempotency of �s, that

eX rð Þ ! �
1

2r
n rð Þ, r!1, ð13Þ

it follows from Equation (12) that VSl
X rð Þ ! �1=r far from all nuclei yields the correct

self-interaction correction. The form of VSl
X rð Þ is shown in Figure 2.

Slater’s potential can be obtained via numerical integration of the terms

VSl
X rð Þ ¼ �

1

2

X
i,j

fi rð Þ fj rð Þ

Z
n r0ð Þ fi r

0ð Þ fj r
0ð Þ

r� r0j j
dr0, i, j ¼ 1, 2, ð14Þ

where f1(r)¼ sin�(r) and f2(r)¼ cos� (r) . Utilising the spherical symmetry the volume
integrals can be calculated using Gauss’ theorem:Z

� r0ð Þ

r� r0j j
dr0 ¼ 4�

1

r

Z r

0

s2�ðsÞ ds�

Z r

0

s�ðsÞdsþ C

� �
, C ¼

Z 1
0

s�ðsÞds: ð15Þ

In Figure 2, the exact VXC KS potential is displayed and can be compared to the
approximate exchange potentials discussed in this article. The Slater’s potential
approaches the exact one far from the nucleus, however, for r~1:5 a.u. it behaves
differently and does not show the shell structure.

Becke’s [10] gradient corrected potential can be evaluated solely from the density
(and its derivatives, but �(r) is not needed). The exchange energy density for spin
compensated systems is

e88 n,rn½ � ¼ eLDA n½ � � b88 n,rn½ �, ð16Þ

where eLDA n½ � ¼ � 3
4

3
�

� �1=3
n4=3 and

b88 n,rn½ � ¼ 2�
n

2

� 	4=3
f xð Þ, f xð Þ ¼

x2

1þ 6�x sinh�1 xð Þ
ð17Þ

and x¼ 21/3n�4/3jrnj, �¼ 0.0042. The exchange potential is the functional derivative:

V88
X ðrÞ ¼

@e

@n
� r

@e

@rn
¼ VLDA

X �
@b88
@n
� r

@b88
@rn

� �
ð18Þ

with VLDA
X ¼ � 3

�

� �1=3
n1=3. For the spherically symmetric atomic density the potential

can be written explicitly as

V88
X ¼ VLDA

X �
4

3
2�1=3n1=3 f� x

@f

@x

� �
�

dn=dr

dn=dr
�� �� d

dr

@f

@x
þ
2

r

@f

@x

� �" #
: ð19Þ

Figure 2 shows that Becke’s correction adds a shell structure to LDA, although this
is displaced when compared to the exact potential.

4. PBE functional

The PBE [11] exchange energy density is usually written in terms of

s n,rn½ � ¼
1

2 3�2ð Þ
1=3

rnj j

n4=3
, ð20Þ
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and is defined as

ePBE ¼ eLDA � F, F ¼ 1þ 	 1�
	

	þ 
s2

� �
, ð21Þ

with 	¼ 0.804 and 
. 0.21951. The corresponding potential is

VPBE
X ¼ VLDA

X � F� s
dF

ds

� �
� r

3n

4
� vLDA �

dF

ds
�
rn

rnj j

s

rnj j

� �
, ð22Þ

which is again simplified as in Equation (19) for the spherical atomic density and
plotted in Figure 2.

5. Summary and future directions

Using the density amplitude n1/2(r) from the fine-tuned HF method of Cordero et al.
[2], and the phase �(r) thereby determined by the pendulum-like Equation (2), we
have calculated both the single-particle kinetic energy density of DFT from
Equation (3), and the exchange energy density from Equation (4). For the latter
quantity, the Dirac density matrix �s(r, r

0) was obtained using Equation (1). The
intimate connection between ts(r) and eX(r) has been stressed here: both being
determined via n(r) and �(r).

Contact between an approximate exchange potential due to Slater, determined
solely by eX(r) and n(r) and the Becke gradient approximation has been established.
Also, reference is made to the important PBE functional, discussed also by Amovilli
et al. [9].

As to future directions, we make proposals below to relax the two-level
occupancy restriction for Be, which allows the Dirac matrix to be constructed from
n(r) and �(r) as in Equation (1). Then, we refer to the force equation set out in
Equation (1) of Bogár et al. [6]. This is an equation for �@V/@r, where V(r) of DFT
[3] determine �s(r, r

0) through the equation of motion [12]

r2
r�s r, r

0ð Þ � r2
r0�s r, r

0ð Þ ¼ 2 V rð Þ � V r0ð Þ½ ��s r, r
0ð Þ: ð23Þ

To treat the case of general level occupancy, but still retaining spherical symmetry
(e.g. Ne and Ar atoms) one must now combine Equation (23) with the force
equation (1) of Bogár et al.

By dividing Equation (23) throughout by �s, and then differentiating with respect
to r to remove V(r0) , one can utilise the force equation given in Bogár et al. [6]. This
relates �@V/@r solely to �s(r, r

0) with its diagonal Cordero density n(r). Of course,
unlike the two-level Be example, one must then solve numerically the resulting partial
differential equation arising from Equation (23) above, but now with input n(r).
And, naturally, one has to have finally an idempoten �s. Though numerically
exacting, grid methods for solution of such a partial differential equation are now in
use. The main new point to be confronted is that an idempotent �s(r, r

0) must be the
final product of such a multilevel occupancy generalisation.
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